skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bagheri, Karim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study developed a hybrid model for predicting dissolved oxygen (DO) using real-time sensor data for thirteen parameters. This novel hybrid model integrated one-dimensional convolutional neural networks (CNN) and long short-term memory (LSTM) to improve the accuracy of prediction for DO in water. The hybrid CNNLSTM model predicted DO concentration in water using soft sensor data. The primary input parameters to the model were temperature, pH, specific conductivity, salinity, density, chlorophyll, and blue-green algae. The model used 38,681 water quality data for training and testing the hybrid deep learning network. The training procedure for the model was successful. The training and test losses were both nearly zero and within a similar range. With a coefficient of determination (R2) of 0.94 and a mean squared error (MSE) of 0.12, the hybrid model indicated higher performance compared to the classical models. The normal distribution of residual errors confirmed the reliability of the DO predictions by the hybrid CNN-LSTM model. Feature importance analysis indicated pH as the most significant predictor and temperature as the second important predictor. The feature importance scores based on extreme gradient boosting (XGBoost) for the pH and temperature were 0.76 and 0.12, respectively. This study indicated that the hybrid model can outperform the classical machine learning models in the real-time prediction of DO concentration. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Chen, Guohua; Khan, Faisal (Ed.)
    Artificial intelligence (AI) and machine learning (ML) are novel techniques to detect hidden patterns in environmental data. Despite their capabilities, these novel technologies have not been seriously used for real-world problems, such as real-time environmental monitoring. This survey established a framework to advance the novel applications of AI and ML techniques such as Tiny Machine Learning (TinyML) in water environments. The survey covered deep learning models and their advantages over classical ML models. The deep learning algorithms are the heart of TinyML models and are of paramount importance for practical uses in water environments. This survey highlighted the capabilities and discussed the possible applications of the TinyML models in water environments. This study indicated that the TinyML models on microcontrollers are useful for a number of cutting-edge problems in water environments, especially for monitoring purposes. The TinyML models on microcontrollers allow for in situ real-time environmental monitoring without transferring data to the cloud. It is concluded that monitoring systems based on TinyML models offer cheap tools to autonomously track pollutants in water and can replace traditional monitoring methods. 
    more » « less